Broadcast Engineer at BellMedia, Computer history buff, compulsive deprecated, disparate hardware hoarder, R/C, robots, arduino, RF, and everything in between.
5746 stories
·
5 followers

The Coolest 1990s Film Scanner To Work With Windows 11

1 Share

Unless you happen to be a retro enthusiast, it’s fair to say that any photography you do (whether on your phone or a dedicated camera) is going to be digital. The world of photography has all but completely moved away from film, but the transition was not instantaneous. Instead there was a period of about ten years from the mid-90s when film and digital existed side-by-side in some form. A profitable sideline for photography shops was providing scans of film, and there were a series of high-end scanners aimed at that market.

[Kai Kaufman] shares the experience of making one of these work with a modern Windows version, and it’s interesting both because of the scanner itself and the epic tale of software detective work required to bring it up to date. The scanner in question is a Pakon F135, the product of a Kodak acquisition, and an all-in-one device that simply spools in a roll of film and does all the hard work of identifying the frames, cropping the images, and reading any other data from the film.

You may never have seen one of these machines, but if you ever had your photos on a CD as well as printed back in the day you’ve probably had its output. The problem in 2022 is that these machines have drivers which only work with relatively ancient 32-bit Windows versions, so most of the write-up involves some significant detective work into the drivers.

Not every reader will be an expert on Windows driver de-compilation, but perhaps the most interesting pieces of the puzzle come from his detective work in finding the origin of some components. Example code from Microsoft and from a chip design company both make the job much easier, and the final result is a fully functioning 64-bit driver for the device. Not many people will have a Pakon film scanner, but for those who do it seems life may just have become a bit easier.

Thanks [adilosa] for the tip!

Read the whole story
tekvax
15 days ago
reply
Burlington, Ontario
Share this story
Delete

Electric Surfboard Gets An Overhaul

1 Share

One of the realities of building your own hardware is that it will more often than not lead to constant tinkering and revisions. [Simon]’s 3D printed electric surfboard is no exception as it recently got an overhaul. The motors were upgraded from 5000 W to 7500 W, most parts were redesigned to use bearings, and the impellers were swapped out. Luckily, almost all the electronics inside were suitable for reuse.

We previously covered the surfboard in question, and we’re always excited to see an old project revisited. The bearing reduces vibrations and allows the system to last longer. Despite the water cooling on the motors, the temperatures were still getting relatively high when running full tilt. So rather than buying more efficient (and more expensive) motors, he opted to reduce the load on the motors by changing out the impeller from a double to a single. But this meant cutting and grinding a new shaft as now needed to be one impeller shorter.

It might not be a huge shock, but with two 7500 W motors, the run time is just 3 minutes, even with a 48 V 16 amp-hour battery bank made up of four cells. Measuring top speed was done by synchronizing two cameras set 100 meters apart, yielding a top speed of 45 km/h. Even with a short run time, it looks like an absolute blast.

Read the whole story
tekvax
15 days ago
reply
Burlington, Ontario
Share this story
Delete

Touch Tone MIDI Phone And Vocoder Covers Daft Punk

1 Share

[poprhythm]’s Touch Tone MIDI Phone is a fantastic conversion of an old touch tone phone into a MIDI instrument complete with intact microphone, but this project isn’t just about showing off the result. [poprhythm] details everything about how he interfaced to the keypad, how he used that with an Arduino to create a working MIDI interface, and exactly how he decided — musically speaking — what each button should do. The LEDs on the phone are even repurposed to blink happily depending on what is going on, which is a nice touch.

Of course, it doesn’t end there. [poprhythm] also makes use of the microphone in the phone’s handset. Since the phone is now a MIDI instrument with both a microphone and note inputs, it’s possible to use them together as the inputs to vocoder software, which he demonstrates by covering Around the World by Daft Punk (video).

We love how [poprhythm] explains how he interfaced to everything because hardware work is all about such details, and finding the right resources. Here’s the GitHub repository for the Arduino code and a few links to other resources.

We have seen MIDI phone projects before, and each one is always unique in its own way: here’s a different approach to converting a keypad phone to MIDI, and this rotary pulse-dial phone went in a completely different direction with the phone itself completely unmodified, using only external interfacing.

You can admire [poprhythm]’s Touch Tone MIDI Phone in action in the short videos embedded below, with each one showing off a different aspect of the build. It’s great work!

Read the whole story
tekvax
15 days ago
reply
Burlington, Ontario
Share this story
Delete

Magic Eye Tubes Go Solid State with This Plug-In Replacement

1 Share

Perhaps nothing added quite so much to the charm of vacuum tube circuits from back in the heyday of the vacuum tube as did the “Magic Eye” indicating tube. With the ghostly green glow of its circular face, magic eyes stood in for more expensive moving-coil meters for things like tuning indicators and VU meters. And while they may be getting hard to come by today, fear not — this solid-state replacement for the magic eye tube is ready to stand in for your restoration projects.

To pull off this clever build, [Gord Rabjohn] started with original 6E5 and 6U5 magic eye tubes, presumably ones that either no longer worked or had become too weak to see. The glass envelopes of the cathode-ray tubes were carefully cut from the sockets, and the guts of the tubes were discarded to make room for the replacement circuit, which lives on two PCBs. A rectangular control board holds an LM3915 bar graph LED driver chip, while a round display PCB holds 120 surface-mount green LEDs. The circular display board is mounted at the top of the control board and perpendicular to it, with a diffuser mounted above the LEDs. Everything is stuffed back into the original glass envelope and socket, making this a plug-in replacement for the tube.

The effect is quite convincing, as shown in the video below. True, you can see some evidence of the individual LEDs even with the diffuser, but honestly this just makes the display look more like the iris of an eye. We really like the look of this and we appreciate the work [Gord] put into it, especially the documentation. For a little more on how the tubes worked, check out [Al Williams]’ article.

Thanks to [Adrian] for the tip.

Read the whole story
tekvax
27 days ago
reply
Burlington, Ontario
Share this story
Delete

High Speed RC Jet Car is a Harsh Teacher

1 Share

Making machines go fast has always been a seemingly unavoidable impulse for humans. With the advent of radio control, it’s possible to get a taste of the rush without putting your life and too much money on the line. In the spirit of speed, [James Whomsley] strapped a jet turbine engine to an RC car, and learned some hard lessons along the way.

The car started as a four-wheel drive electric race car, but [James] removed most of the drive train components and mounted the jet turbine engine on a pair of 3D printed struts. Originally intended for large-scale RC planes, the little jet engine produces about 120 N of thrust. To allow the car to stop, [James] kept the drive shafts and connected them to a centrally mounted disk brake unit.

For the first high-speed test runs, James added a vacuum-formed shell and a pair of large vertical stabilizers for high-speed stability. On the 3rd test run at a local racetrack, the car got up to 190 km/h (118 MPH) before it veered off the track and crashed. Fortunately, the chassis and engine only sustained minor damage and were easy to repair.

James rebuilt the car with a lower engine to reduce the center of gravity and added an electronic gyro in an attempt to stabilize the car at high speed. Time ran out, and he wasn’t able to test the car before taking it to a high-speed RC event held on a runway. This led to another crash when the car again veered off the track after badly oscillating. After checking the onboard footage, [James] discovered the receiver had experienced a loss of signal, and an incorrect fail-safe setting made the engine go full throttle. After more tests, James also found that excessive play in the steering mechanism had caused the gyro to induce oscillations.

Although this car failed in the end, [James] intends to take the lessons learned into a new high-speed car build. [rctestflight] also did some testing with an EDF-powered RC car recently, and used a drone flight controller for high speed stability. This is not [James]’ first foray into speed machines, having previously experimented with a rocket plane.

Read the whole story
tekvax
29 days ago
reply
Burlington, Ontario
Share this story
Delete

Soviet-Era Test Gear Defects to YouTube

1 Share

If you want to work on communication gear — especially in the 1960s — you probably wanted a VTVM (a vacuum tube voltmeter), a way to generate frequencies, and a way to measure frequencies and power. The Soviet military had a piece of portable gear that could do all of this, the IK-2, and [msylvain59] shows up how one looked on the outside and the inside in the video below. Be warned, though. The video is hard to stop watching and it runs for over an hour, so plan accordingly.

We don’t read Russian, but based on the video, it looks like the lefthand piece of gear is a frequency generator that runs from 20 to 52 MHz and a power meter. The right-hand instrument is a VTVM that has some way to measure frequency and the center section is a quartz crystal frequency standard.

The device has a battery, although there were problems with it in this unit. It can also take external power. Inside the portable case is a sturdy-looking pair of 100 ohm resistors in parallel to form a 50 ohm dummy load. The circuits inside are, as you’d expect, large surely hand-soldered components.

According to one of the comments, the unusual tubes inside were originally designed for Sputnik. While it is hard to imagine today, in the 1960s this instrument was a marvel of miniaturization.

It is interesting how similar military gear looks from either side of the iron curtain. Or space hardware.

Read the whole story
tekvax
31 days ago
reply
Burlington, Ontario
Share this story
Delete
Next Page of Stories